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Abstract

In this study, the certain stability problem is studied for diffusion equation by special method
on a finite interval. The method which used was given firstly by Ryabushko for Sturm-Liouville
problem in [23]. There are many different stability criteria. In practice, any one of a number of
different stability criteria is applied. The stability of spectral functions has been shown by using
the asymptotics of the eigenvalues for diffusion problems with different initial conditions in this
work. Also, we introduce the notion of norming constants and establish their interrelation with
the spectra.
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1 Introduction

Inverse problems of spectral analysis are the problems of constructing a linear operator from some
of its spectral characteristics. An effective method of constructing Sturm-Liouville operator from
two spectra is given in [3]. Levitan [4] established determination of the Sturm-Liouville operator
from one and two spectra. Jaulent and Jean [6] stated the actual background of diffusion operators
and discussed the inverse problem for the diffusion operator. Gasymov and Guseinov [1] studied
the spectral theory of diffusion operators. Panakhov and Koyunbakan [12] considered the half
inverse problem for the diffusion operators on the interval. Sat and Panakhov studied generalized
degeneracy of the kernels for the diffusion operator in [14]. Direct and inverse problems for the
diffusion operator were considered in several works [6]- [14]. In this paper, we shall establish certain
stability of spectral functions of two spectral problems for diffusion operators on a finite interval.
The stability problem means that when the eigenvalues of the considered problems finitely coincide
then the bound of variation for the spectral functions is estimated. In study [23], the author showed
the proximity of the spectral functions for regular Sturm-Liouville problems on a finite interval.
This type of problem for a self-adjoint operator is considered by Marchenko [18] on a semi-axis.
There are many researches about the stability of the spectral theory in the literature [15]- [25].
In this work, the coefficients p(x) and ¢q(z) of quadratic pencils of Sturm-Liouville operators are
uniquely determined by two spectra using classic way for Sturm-Liouville operators [2,5]. The
stability problem for diffusion equation is discussed on finite interval using the method given in
study [23]. We show the proximity of the spectral functions for diffusion equations.

2 Preliminaries

Consider the diffusion equation
—y" (2) + (2 (@) + @1 (2)) y (2) = Ny (2) ,0<aw <7 (2.1)
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with the boundary conditions
y' (0) —hy (0) =0, y'(m) + Hy () =0 (2.2)

Y (0) = hay (0) = 0, o/ () + Hy(x) = 0 (2.3)

where ) is a spectral parameter, p(x) € W4 [0,7] and ¢; (z) € L2 [0,7], p(z) and ¢;(x) are real-
valued functions, hy, ho and H are real numbers with hy # ho. Let us denote the eigenvalues of
the boundary value problems (2.1)-(2.2) and (2.1), (2.3) by {X\1,,}”", and {u1,,}”_, respectively.
The asymptotic expressions for the eigenvalues are given by [1]

Cin

)qnfn+co+—+7 (2.4)
c Cln
mn—n+c(>+—+7 (2.5)

for large negative and positive values of n, respectively, where

1 (" ~
€= / p(@)de, Y leral” < oo, D7 [ernl < oo,

n n

a=t(memeg [[0w+rw)a),

61:1<h2+H+;/Oﬂ(ql(x)+p2(x))dz>.

™

Now consider the second equation

—y" (x) + 2\ (2) + g2 (2)) y (z) = N’y (z) ,0<z < (2.6)

with the boundary conditions (2.2) and (2.3), where go(z) is real-valued function and ¢s (z) €
Ly [0,7]. Denote by{X2,}™  and {u2,}>  the eigenvalues of problems (2.2), (2.6), and (2.3),
(2.6), respectively, and the following asymptotic formulas are hold [1]

Can

)\2 —n+co+—+ ?n (27)
C2n

iz, _n+co+—+ - (2.8)

where

D eanl? <00, Y léam|® < oo,
1 s
<h1 +H + 2/ (g2 (z) + p? (x))dr> )
0
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@ (x, ) is the solution of the equation (2.1) satisfying initial conditions
e(0,\) =1, ¢ (0,\) = h. (2.9)

Obviously, ¢, () = ¢ (z, A,) is an eigenfunction of (2.1)-(2.2), corresponding to the eigenvalue A,
and the solution of the problem (2.1)-(2.2) is given by [1]

¢ (2, A) = cos (Ax — ap, (z)) —|—/ Ap, (x,t) cos Atdt —|—/ By, (x,t) sin Atdt
0 0

where

o, () = (0) +2 | " (A, (.0 sina (&) — By (6,6) cosa (€)) de.

Let’s set the norming constants of problem (2.1)-(2.2)

s 1 s
- / o2 (z) do — — / p(x) @2 (x) da.
0 An Jo

Similarly, ¢ (z, A) is the solution of the equation (2.6) satisfying conditions (2.9).
Then denote the norming constants of problem (2.6), (2.2) as follow:

o= [ G@do- - [ 9@ @) ds

where ¢ (7, A\n) = G, () -
Now we set the spectral functions of problems (2.1)-(2.2) and (2.2), (2.6) as follows:

)= 2 ﬁ A0
D, mn A<0

L7 A>0
po (V) = { Shancrmr A2

1
- Z)\<>\2,n g’ A<0

respectively.

3 Main results

In this section, our purpose is to give effective methods of restoring the diffusion equation from
two spectra following the method for classical Sturm-Liouville operator and is to prove the stability
theorem for diffusion equation.

Theorem 3.1. We have

Q1n

h2 — hl = / (Al,k - )\17n

— C(n=0,+1,42,..),
220 (1,0 — Ain) s Mk — Al,n) ( )

where the symbols H' denotes the number £ = n has been omitted from the infinite product.
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Proof. Denote by ¢ (x,\) and ¢ (x, \) the solutions of the equation (2.1) which satisfies the bound-
ary conditions

90(0;/\) =1, 90/(07)‘) = hi,

¢(03A) =1, W(Oa/\) = ha.

The eigenvalues of boundary problems (2.1)-(2.2) and (2.1), (2.3) coincide with the zeros of the
functions
31 ()‘) - 50/ (71—7)‘) +H(p(’ﬂ'7)\),

Dy (A) = ¢ (m,A) + HY (7, A)
respectively. Put
) =9 (@A) +mA) ¢ (z,A)
and require that f (z,A) should hold the condition

f' (7, )+ Hf (m,\) = 0.

It follows that

(pl (7T7>\) +H@ (W,A) ] (/\)
It can be seen from this formula that m () is a metamorphic function, its poles and zeros coincide
with the eigenvalues of the problems (2.1)-(2.2) and (2.1), (2.3), respectively. On the other hand,

it follows from Green’s formula that

(/\? — )\g) /07r f (l‘,)\l) f (1‘,)\2) dr =

(e 2) £ (0 M) — /(2 A0) £ (@ )5+ / " F @) £ () (20 — 2X) p () da

=(m\) —m(A2)) (h1 — h2) +2 (A1 — A2) /07T fx,\) f(z,22) p(x)da. (3.1)
Putting Ay = A\, Ao = X in (3.1) gives

. ) Lo 2 (b1 —ho) Imm (\)
/0 |f (2, M) dx—@/o p(@)|f (2, A" de = 2 ImAReN

It can be seen from this formula that if h; > ho then the function m (\) maps the upper half-line
onto itself ( for hy < hg this holds for the lower half-plane). Hence, the zeros and poles of the
function m (\) alternates.

Applying Green’s formula again, gives

(/\2)\fl)/0ﬂf(z,)\)<p(x,/\n)dxh2h1+2()\)\n)/Oﬂf(a:,)\)ga(a:,)\n)p(a:)dx,

or

()\2_)\721)/Oﬂf(x7)\)<p(x,)\n)dx—2()\—)\n)/oﬂf(m,)\)w(x,)\n)p(:v)dx:hg—hl.
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On the other hand
(A2 = )\2) fo JA) @ (:L‘ An) dx + (N2 )\2) m(A) [y ez, \) e (x, )\n) dx
—2h —h n ﬁ) x, Ao @A) p(@)de —2 (A= X)) m(N) [ (@) e (z,A) p(2) de

Assuming here that instead of all A putting A,,, (A = \,)

an:/(JTrcpz( dm——/ s An) dz

hy —
T lim 20, (A= A m () (32)

A=Ay,

It is generally known that the functions of order 1/2 and are determined by their zeros up to
constant factors thus:

VAN || (1—;})7@2@):02 I (1_A)

k=—o0 k=—o00 Fk

where Cy and Cy are constants. It follows that from these formulas and (3.2)

ha — hy Ch . (Mk) > (Ak’_)\n>
oy =—— — .
2)\77, (,U/n - >\n) 02 k:l_—[oo )\k k:l_—[oo e — )\n

Now it has to be shown that

Note that it follows from the asymptotics formulas for a solution of the diffusion equation that
D1 (A) =¢' (m, A) + Hp (7, A)

= (a},, (7) = A) sin (A7 — ap, (7)) + Ap, (7, 7) cos Am
+Bp, (7, ) sin A + H cos (A — ap, (7))

+f0 (HAh Mhaliyt) ) cos Atdt
5 (B, () + 225550 ) sin v

nd
’ B3 () =¥ (m,X) + HY (7, )
= (), (m) = A) sin (A1 — g, (7)) + Ap, (7, 7) cos A
+Bp, (7, m) sin A\ + H cos (Ar — ap, (7))

+ [y (HAh2 m,t) + thiiw’t) )cos Atdt

5 (B () + 223850 ) sin At

The last two equalities yield that
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that is )
O A A\
lim — ] <1> <1>

Am—ooCy Ak ke

Cl i Kk ad )\k - A
= — — 1 =1

CQ i )\k )\—l>riloo k:li[oo HEe — A

We now prove that
. A=A - Ae = P\ _
dn I 5=s = I (e 55) = oy

From the asymptotic formulas for the eigenvalues of the considered problem, it is known that
Ae=n+¢co+0(1) and pr =n+co+ O (1). Hence A\ — ur, = O (1) and the series

i Ak — [k :i()\k—,uk n A—k—ﬂ—k> n Ao — Ho
M e e AN pk = A po— A~
converges uniformly in a neighbourhood of the point A = —oco. Therefore the limit in each term of
the infinite product (3.4) can be approached, that is,
. - Ak — [k
1 1 =1
Jm 11 ( ¥ M_A)
and the Eq. (3.3) is obtained from the last equality. Thereby the proof is completed. Q.E.D.

Then the expressions of norming constants in terms of two spectra of problems (2.1)-(2.2) and (2.1),
(2.3), respectively, are shown by

ho — hq /(/\lk_)\ln) , (n:07i1,i2,...),
k

T
b 2A1 0 (1 n — A1) M1k — An
hg—hl ad ’(>\2k_>\2n>
oy = 22k 722 ) 41,42, ).
Zn 2X2.n (H2,n — A2.n) s M2,k — A2,n ( )

Now we give main theorem in this study.

Theorem 3.2. Let the eigenvalues {\;x} and {u;x} (j = 1,2) coincide the numbers of 2N + 2
such that Ay, = Ao and 1 = po for k=1,2,..., N+ 1and k= —-1,...,—N — 1 then

C’e~cp1 (%) , A>0

Var  {p(\) = p2 (N} < { CeCpa (-5) . A<0

—%<)\<oo
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respectively, for k> N+1 , n< 4 N>24and N >2Aincaseof A\ >0and fork<—-N—1
, N> — N N>2AandN>2A1ncaseof)\<0where

I Cok — C1k
== t) —q (1)) dt + 25 Lk
s [ (@20 =@ () e+ O]
< 11 ™ C1,k — Co.k
~ 3 [ @O - m @) B2,

= (+gy)(A+d) and C = 7]\(,1(:2?17)7(;424))
2TaIN T5N2

Proof. From the definition of the variation, it follows that

n 1
max |1— 3o\ o my . A20
Var {1 (A) —p2(V)} < An<do 0422 " 11
oo <A< max |1— | 3 xn w2 <0
Ag <\ < o0 o
max (AN+2), A>0
< An<Ao (3.5)
max \1_f]p2(x N-2), A<0
A <A

for Ao < An42 and A_ny_2 < Ay, respectively. The assessment of the variation of the spectral
functions is reduced to evaluation of the absolute value on the right part of (3.5).
So firstly, we must examine the inequality

oo

max |1 — D | o max |1 — H (Mg = Aun) (2 = A2in) . (3.6)
n<d Qg | T on<d hoNLo (A2 — A2n) (1k — A1n)

In this case, the eigenvalues coincide only for k =1,2,..., N +1, that is A\j , = Ao, and p1 5 = po
for k=1,2,...,N +1 . Considering the infinite product

M Atk — Ain) (B26 — A2n)
Uy () = : ’ : ’ 3.7
1 () ,CZI;IH A2k = Azn) (1 — A1n) (37

and taking the logarithm of each side of (3.7), it can be easily obtained that

- Mg — Mo Ao.n
IIn ¥y (A\,)| = Z n(lkl> Z In <M2k 2 )
pinhe \Azk = Ao ) A Nk = Al
= A2k — Atk — Pk — 2,k
< > m(1- 22 Y (1 ) (3.8)
Myl Aok — A1 Pl M1k — A2
For k> N+1, n< %, it follows that |225=20k | < | apd [Muk=bzk| o
2 A2,k —A1,n M1,k —A2,n
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From the last inequalities Eq. (3.8) can also be written as

50 ixz,k—imc o /Ll,k—l;z,k
2,k —Al,n K1,k —A2,n
¥, (A< S S . (3.9)
1_ A2 k—A1k 1 |HLe—H2k
k=N+2 A2,k —A1,n k=N+2 H1,k—A2,n

Considering asymptotic formulas of the eigenvalues (2.4), (2.5), (2.7), (2.8) and after some straight-
forward computations we can obtain that

‘/\m — k| _ | zmw Jo (2 () — a1 (1) dt + 222t
)\Z,k - >\1,n )‘2J€ (1 _ %)
A A1+ 52
= e N1 ( 7 2N)3 (3.10)
(k 1)(1— 1[[2H> (3 + 1% + z=7)
2 A2 N2
and o
’“Lk — M2,k a5 Jo (@1 (t) — a2 (1)) dt + =2
M1k — A2n L /\2,[&]]
‘(k B 5) <1 o M1,N2+2
A1+ 5%
<5 1( 72N)3 . (3.11)
(5 tav Tt 2N2)
Substituting (3.10) and (3.11) into (3.9), it follows that for N > 24 and N >2A
(1+ %) (a+4)
In Ty (A,)] < (3.12)

N(z+ay + o)
Considering (3.6) with (3.12) and using serial expansion of exponential function then the proof of

Theorem 3.2 is completed for positive eigenvalues.
On the other hand, we consider that

—N-2
max |1 — 2" = max [1- [] Az = Aain) (1. = Atn) | (3.13)
n>—4 Q1,n n>—4 oo ()\l,kr - )\l,n) (p2, — )\Q,n)
In this case, the eigenvalues coincide only for k = —1, ..., —N —1, that is A; , = Ao and pq 5 = po i
for k= —1,...,—N — 1. Considering the infinite product

~N-2
A2k — Aa.n —Aln
wow = ] A2k — Aon) (pa,k — A1n)

ALk — Ain) (26 — A2n)

k=—o0
by making similar calculations as above it follows that
—~N—-2 —N-2
>\2k—)\2n> (/hk—)qn)
In| =2 =~ + In| — —-
Z (Al,k —Ain k;m Mok — A2

k=—o0

In Wy (N,)| =
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—-N-2 A\ A\ —N-2 u i
< In 1—M>‘+ ln<1—2’k_1’k)'. 3.14
- k_z ( Ak — A2n _Z Mok — An (8:.14)
=—00 k=—o0
for k< —N —1and n > —% | it can be easily seen % <1 and % <1
2,k 1,k 2,n
From the last inequalities rewrite Eq. (3.14) as
_N_2 ALk — A2,k _N—_2 M2,k —H1,k
|ln\I’ ()\ )| < Z Al k—A2,n 4 Z M2,k —A1,n (3 15)
2 1 — [due=dow 1 |r2smm | ’
k=—o0 A1, k—A2,n k=—o0 12,k —A1,n
Here using the classical asymptotics of the eigenvalues, it follows that
‘ Ak — A2k 271'k: fo @ (t) —q )) dt + 2oLk Cl .
<
)\1,k - )\2,77, 1
o 5 >\1 _N-2
A1 +
< 2N — (3.16)
N ( + 4N + 2N2)
and o
’“2,k — Mk zor Jo (@1 (D) — g2 (1)) di + =g
M2k — An ’(_k )<1_ L[ ]])’
H2,—N -2
A1+ 5
( 2 ) : (3.17)
N( tiv t 2N2)
Substituting (3.16) and (3.17) into (3.15), we have for N > 24 and N > 2 A
A(1+5%) A(1+55%)
N(i41z 415 Nl_;’_li_;'_ﬁ
|1n\:[12(>\n)|< (2 4 2N2) 4 (2 ~4N 2(2)
1 A(1+55%) 1 A1+
M) VR
(A + A) (1 + 2N)
(3.18)

Then considering (3.13) with (3.18) and using serial expansion of exponential function we can obtain
proof of Theorem 3.2 for negative eigenvalues. Therefore the proof is completed. Q.E.D.
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4 Conclusion

In spectral theory, the stability theorem explains the stability of solutions or spectral functions of
differential equations under small perturbations of initial conditions. For instance, if small pertur-
bations of initial data of considered differential equation lead to small variations then differential
equation is stable. In this study, applying Ryabushko’s method, we obtain the proximity of spec-
tral functions of problems (2.1)-(2.2) and (2.2), (2.6) whose eigenvalues {\; ;} and {p;x}(j =1,2)
coincide numbers of 2N + 2. Also, the procedure of reconstruction of the equation (2.1) from its
two spectra is indicated.
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